158 research outputs found

    Osteotomy and Autograft Lengthening for Intra-Articular Malunion of the Proximal Ulna: A Case Report

    Get PDF
    An osteotomy with interposition of iliac crest bone graft and lengthening of the proximal ulna can be used to restore ulnohumeral congruency after a malunited comminuted olecranon fracture treated with figure-of-eight tension band wiring

    Artificial intelligence in orthopaedics:false hope or not? A narrative review along the line of Gartner's hype cycle

    Get PDF
    Artificial Intelligence (AI) in general, and Machine Learn-ing (ML)-based applications in particular, have the potential to change the scope of healthcare, including orthopaedic surgery.The greatest benefit of ML is in its ability to learn from real world clinical use and experience, and thereby its capability to improve its own performance.Many successful applications are known in orthopaedics, but have yet to be adopted and evaluated for accuracy and efficacy in patients' care and doctors' workflows.The recent hype around AI triggered hope for development of better risk stratification tools to personalize orthopaedics in all subsequent steps of care, from diagnosis to treatment.Computer vision applications for fracture recognition show promising results to support decision-making, overcome bias, process high-volume workloads without fatigue, and hold the promise of even outperforming doctors in certain tasks.In the near future, AI-derived applications are very likely to assist orthopaedic surgeons rather than replace us. 'If the computer takes over the simple stuff, doctors will have more time again to practice the art of medicine'.(76)</p

    Surgeon Personal Factors Associated with Care Strategies in Musculoskeletal Telehealth

    Get PDF
    Background: Most surgeons used, or are currently using telehealth during the SARS-CoV-2 (COVID-19) pandemic. We studied surgeon personal factors associated with relative use of telehealth during the worldwide height of the pandemic. Questions/Purposes: (1) Are there any personal factors/characteristics associated with use and utilization of telehealth? (2) What are surgeon’s perspectives/ opinions with regard to use of telehealth for five common upper extremity conditions in terms of future prospects and viability? Methods: Hand and upper extremity surgeons in the Science of Variation Group (SOVG) were invited to participate in a web-based survey. The first part of the survey focused on surgeon characteristics and work preferences. The second part focused on care strategies during the pandemic and utilization of telehealth. The final part of the survey addressed the care of five common upper extremity conditions during the pandemic. Results: Ninety percent of surgeons used telehealth during the first few months of the pandemic, but only 20% of visits were virtual. A greater percentage of telehealth visits compared to office visits was independently associated with a policy of only seeing people with emergencies in person (RC: 0.64; CI 95%: 0.21 to 1.1; P&lt;0.01). Surgeons found it difficult to reproduce most parts of the physical examination on video, but relatively easy to make a diagnosis, with both ratings associated with less belief that the physical exam is essential. Comfort in offering surgery by video visit was associated with having young children, preference for remote meetings, and less belief that the physical exam is essential. Conclusion: Utilization of, and comfort with, telehealth is related to personal factors and preferences, acceptance of a more limited physical examination in particular. Utilization of early adopters and training to increase comfort with the probabilistic aspects of medicine could facilitate incorporation of telehealth into standard practice.</p

    The management of elbow trauma from a historical perspective

    Get PDF
    The origins of contemporary orthopedics can be traced all the way back to antiquity. Despite the absence of modern imaging techniques, a few bright minds were able to lay the groundwork for understanding these fractures. This historical review will cover the process behind the various treatments for elbow fractures, such as splinting and casting, mobilization, amputation, fracture fixation, arthroplasty, and arthroscopy.</p

    Regional differences in the three-dimensional bone microstructure of the radial head:implications for observed fracture patterns

    Get PDF
    Introduction: A characterization of the internal bone microstructure of the radial head could provide a better understanding of commonly occurring fracture patterns frequently involving the (antero)lateral quadrant, for which a clear explanation is still lacking. The aim of this study is to describe the radial head bone microstructure using micro-computed tomography (micro-CT) and to relate it to gross morphology, function and possible fracture patterns. Materials and methods: Dry cadaveric human radii were scanned by micro-CT (17 μm/pixel, isotropic). The trabecular bone microstructure was quantified on axial image stacks in four quadrants: the anterolateral (AL), posterolateral (PL), posteromedial (PM) and anteromedial (AM) quadrant. Results: The AL and PL quadrants displayed the significantly lowest bone volume fraction and trabecular number (BV/TV range 12.3–25.1%, Tb.N range 0.73–1.16 mm−1) and highest trabecular separation (Tb.Sp range 0.59–0.82 mm), compared to the PM and AM quadrants (BV/TV range 19.9–36.9%, Tb.N range 0.96–1.61 mm−1, Tb.Sp range 0.45–0.74 mm) (p = 0.03). Conclusions: Our microstructural results suggest that the lateral side is the “weaker side”, exhibiting lower bone volume faction, less trabeculae and higher trabecular separation, compared to the medial side. As the forearm is pronated during most falls, the underlying bone microstructure could explain commonly observed fracture patterns of the radial head, particularly more often involving the AL quadrant. If screw fixation in radial head fractures is considered, surgeons should take advantage of the “stronger” bone microstructure of the medial side of the radial head, should the fracture line allow this

    Coronoid fractures and traumatic elbow instability

    Get PDF
    The coronoid process is key to concentric elbow alignment. Malalignment can contribute to post-traumatic osteoarthritis. The aim of treatment is to keep the joint aligned while the collateral ligaments and fractures heal. The injury pattern is apparent in the shape and size of the coronoid fracture fragments: (1) coronoid tip fractures associated with terrible triad (TT) injuries; (2) anteromedial facet fractures with posteromedial varus rotational type injuries; and (3) large coronoid base fractures with anterior (trans-) or posterior olecranon fracture dislocations. Each injury pattern is associated with specific ligamentous injuries and fracture characteristics useful in planning treatment. The tip fractures associated with TT injuries are repaired with suture fixation or screw fixation in addition to repair or replacement of the radial head fracture and reattachment of the lateral collateral ligament origin. Anteromedial facet fractures are usually repaired with a medial buttress plate. If the elbow is concentrically located on computed tomography and the patient can avoid varus stress for a month, TT and anteromedial facet injuries can be treated nonoperatively. Base fractures are associated with olecranon fractures and can usually be fixed with screws through the posterior plate or with an additional medial plate. If the surgery makes elbow subluxation or dislocation unlikely, and the fracture fixation is secure, elbow motion and stretching can commence within a week when the patient is comfortable.</p

    In Vivo Length Changes Between the Attachments of the Medial Patellofemoral Complex Fibers in Knees With Anatomic Risk Factors for Patellar Instability

    Get PDF
    Background: Medial patellofemoral complex (MPFC) reconstruction plays an important role in the surgical treatment of patellar instability. Anatomic reconstruction is critical in re-creating the native function of the ligament, which includes minimizing length changes that occur in early flexion. Anatomic risk factors for patellar instability such as trochlear dysplasia, patella alta, and increased tibial tuberosity to trochlear groove (TT-TG) distance have been shown to influence the function of the MPFC graft in cadaveric studies, but the native length change patterns of the MPFC fibers in knees with anatomic risk factors have not been described. Purpose: To describe the in vivo length changes of the MPFC fibers in knees with anatomic risk factors for patellar instability and identify the optimal attachment sites for MPFC reconstruction. Study Design: Controlled laboratory study. Methods: Dynamic computed tomography imaging was performed on the asymptomatic knee in patients with contralateral patellar instability. Three-dimensional digital knee models were created to assess knees between 0° and 50° of flexion in 10° increments. MPFC fiber lengths were calculated at each flexion angle between known anatomic attachment points on the extensor mechanism (quadriceps tendon, MPFC midpoint [M], and patella) and femur (1, 2, and 3, representing the proximal to distal femoral footprint). Changes in MPFC fiber length were compared for each condition and assessed for their relationships to morphologic risk factors (trochlear depth, Caton Deschamps Index [CDI], and TT-TG distance). Results: In 22 knees, native MPFC fibers were found to be longer at 0° than at 20° to 50° of flexion. Length changes observed between 0° and 50° increased with the number of risk factors present. In the central fibers of the MPFC (M-2), 1.7% ± 3.1% length change was noted in knees with no anatomic risk factors, which increased to 5.6% ± 4.6%, 17.0% ± 6.4%, and 26.7% ± 6.8% in the setting of 1, 2, and 3 risk factors, respectively. Nonanatomic patella-based attachments were more likely to demonstrate unfavorable length change patterns, in which length was greater at 50° than 0°. In patellar attachments, an independent relationship was found between increasing length changes and TT-TG distance, while in quadriceps tendon attachments, a trend toward a negative relationship between length changes and CDI was noted. All configurations demonstrated a strong relationship between percentage change in length and number of morphologic risk factors present, with the greatest influence found in patella-based attachments. Conclusion: The MPFC fibers demonstrated increased length changes in knees when a greater number of morphological risk factors for patellar instability were present, which worsened in the setting of nonanatomic configurations. This suggests that the function of the intact MPFC in patients with anatomic risk factors may not reflect previously described findings in anatomically normal knees. Further studies are needed to understand the pathoanatomy related to these changes, as well as the implications for graft placement and assessment of length changes during MPFC reconstruction techniques. Clinical Relevance: MPFC length change patterns vary based on the number of morphologic risk factors for patellar instability present and should be considered during reconstructive procedures.</p

    Prediction of Postoperative Delirium in Geriatric Hip Fracture Patients:A Clinical Prediction Model Using Machine Learning Algorithms

    Get PDF
    INTRODUCTION: Postoperative delirium in geriatric hip fracture patients adversely affects clinical and functional outcomes and increases costs. A preoperative prediction tool to identify high-risk patients may facilitate optimal use of preventive interventions. The purpose of this study was to develop a clinical prediction model using machine learning algorithms for preoperative prediction of postoperative delirium in geriatric hip fracture patients. MATERIALS & METHODS: Geriatric patients undergoing operative hip fracture fixation were queried in the American College of Surgeons National Surgical Quality Improvement Program database (ACS NSQIP) from 2016 through 2019. A total of 28 207 patients were included, of which 8030 (28.5%) developed a postoperative delirium. First, the dataset was randomly split 80:20 into a training and testing subset. Then, a random forest (RF) algorithm was used to identify the variables predictive for a postoperative delirium. The machine learning-model was developed on the training set and the performance was assessed in the testing set. Performance was assessed by discrimination (c-statistic), calibration (slope and intercept), overall performance (Brier-score), and decision curve analysis. RESULTS: The included variables identified using RF algorithms were (1) age, (2) ASA class, (3) functional status, (4) preoperative dementia, (5) preoperative delirium, and (6) preoperative need for mobility-aid. The clinical prediction model reached good discrimination (c-statistic = .79), almost perfect calibration (intercept = −.01, slope = 1.02), and excellent overall model performance (Brier score = .15). The clinical prediction model was deployed as an open-access web-application: https://sorg-apps.shinyapps.io/hipfxdelirium/. DISCUSSION & CONCLUSIONS: We developed a clinical prediction model that shows promise in estimating the risk of postoperative delirium in geriatric hip fracture patients. The clinical prediction model can play a beneficial role in decision-making for preventative measures for patients at risk of developing a delirium. If found to be externally valid, clinicians might use the available web-based application to help incorporate the model into clinical practice to aid decision-making and optimize preoperative prevention efforts
    corecore